首页> 外文OA文献 >MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems
【2h】

MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems

机译:maTsumoTo:用于计算的maTLaB代理模型工具箱   昂贵的黑盒全局优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MATSuMoTo is the MATLAB Surrogate Model Toolbox for computationallyexpensive, black-box, global optimization problems that may have continuous,mixed-integer, or pure integer variables. Due to the black-box nature of theobjective function, derivatives are not available. Hence, surrogate models areused as computationally cheap approximations of the expensive objectivefunction in order to guide the search for improved solutions. Due to thecomputational expense of doing a single function evaluation, the goal is tofind optimal solutions within very few expensive evaluations. The multimodalityof the expensive black-box function requires an algorithm that is able tosearch locally as well as globally. MATSuMoTo is able to address thesechallenges. MATSuMoTo offers various choices for surrogate models and surrogatemodel mixtures, initial experimental design strategies, and samplingstrategies. MATSuMoTo is able to do several function evaluations in parallel byexploiting MATLAB's Parallel Computing Toolbox.
机译:MATSuMoTo是MATLAB替代模型工具箱,用于计算上昂贵的黑盒全局优化问题,这些问题可能具有连续,混合整数或纯整数变量。由于目标函数的黑匣子性质,导数不可用。因此,替代模型被用作昂贵的目标函数的计算上便宜的近似值,以指导寻找改进的解决方案。由于进行单个功能评估的计算成本,目标是在很少的昂贵评估中找到最佳解决方案。昂贵的黑盒功能的多模态性要求一种能够在本地以及全局范围内进行搜索的算法。 MATSuMoTo能够解决这些挑战。 MATSuMoTo为代理模型和代理模型混合物,初始实验设计策略和抽样策略提供了多种选择。通过利用MATLAB的Parallel Computing Toolbox,MATSuMoTo可以并行执行多个功能评估。

著录项

  • 作者

    Mueller, Juliane;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号